Co-designing a real-world laboratory for systemic design in the Italian Alps: how complexity shapes the process

Bookmark0

Tobias Luthe

sustainability transitions
place-based research
experimentation
boundary objects
scaling effects
Real-world laboratories (RwL) are part of a dynamic family of sustainability research settings, i.e. living laboratories, urban labs, or social innovation labs. They share the idea to use experiments in real-world settings to understand and shape societal transformations towards sustainability. RwL create spaces for transdisciplinary research, developing and experimenting with potential solutions to complex sustainability challenges. They provide opportunities for informing global sustainability through place-based research and systemic design, and help define context-specific pathways towards sustainability.

On the case of the RwL MonViso Institute (MVI) in the Italian Piedmont mountains, demonstrated on a number of concrete examples and experiments, we explore the RwL approach for improving the understanding about systemic design and social-ecological transformations and how they differ from current modes of research. We pinpoint challenges and opportunities to inform the transfer to global sustainability from place-based, context-specific pathways towards sustainability, applying the RwL concept of combining transformation, experimentation, transdisciplinary (TD) collaboration, long-term orientation, transferability, learning and reflexivity. The interdependency of these characteristics is showcased by different experimental settings at the MVI, for example with University groups engaging in TD and systemic design research on-site, while critically reflecting, presenting and cognitively evaluating results and effects with local stakeholders and international audiences on a global scale.

The systemic design process of building the MVI as RwL and demonstration hub for systemic design is complex and guided by this complexity. We illustrate this on a number of examples: for instance, balancing local traditional knowledge, local building regulations and necessary innovation in building materials and techniques is both systemic design and a later-used demonstration of it. The doing and the demonstration of systemic design are interwoven and feedback into each other, which make the SD process quite complex, leading to conceptually less-systemic design decisions that actually only demonstrate the reality in doing systemic design in a real-world setting. Thus, the inherent complexity that becomes obvious only in the doing is shaping the process of developing the MVI. Further examples are funding or social inclusion, while all are connected.

Finally, we reflect on the MVI design as RwL applied to different scales of transformations. The specific challenges and benefits imposed on the MVI RwL, given its location, provide insights into labs as boundary objects and on their typologies to connect sustainability research and systemic design across scales.

Posted Oct-2017

0 Comments

Attribution

RSD proceedings are licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. This permits anyone to copy and redistribute the material in any medium or form according to the licence terms.

Suggested Citation Format

Author(s) (20XX). Article title. In Proceedings of Relating Systems Thinking and Design (RSDX) 20XX Symposium. City, Country, Month X-X, 20XX.

Creative Commons Licence

RSD10 Updates

Join the RSD10 mailing list to stay up-to-date on symposium developments.

Your SDA membership offers additional RSD features.

Thank you for